Semi-invariant warped product submanifolds of almost contact manifolds
نویسندگان
چکیده
* Correspondence: meraj79@gmail. com Department of Mathematics, University of Tabuk, Tabuk, Kingdom of Saudi Arabia Full list of author information is available at the end of the article Abstract In this article, we have obtained necessary and sufficient conditions in terms of canonical structure F on a semi-invariant submanifold of an almost contact manifold under which the submanifold reduced to semi-invariant warped product submanifold. Moreover, we have proved an inequality for squared norm of second fundamental form and finally, an estimate for the second fundamental form of a semi-invariant warped product submanifold in a generalized Sasakian space form is obtained, which extend the results of Chen, Al-Luhaibi et al., and Hesigawa and Mihai in a more general setting. 2000 Mathematics Subject Classification: 53C25; 53C40; 53C42; 53D15.
منابع مشابه
Warped Product Semi-Invariant Submanifolds in Almost Paracontact Riemannian Manifolds
We show that there exist no proper warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds such that totally geodesic submanifold and totally umbilical submanifold of the warped product are invariant and anti-invariant, respectively. Therefore, we consider warped product semi-invariant submanifolds in the form N N⊥×fNT by reversing two factor manifolds NT and N⊥. W...
متن کاملGeneric Warped Product Submanifolds in Nearly Kaehler Manifolds
Warped product manifolds provide excellent setting to model space-time near black holes or bodies with large gravitational force (cf. [1], [2], [14]). Recently, results are published exploring the existence (or non-existence) of warped product submanifolds in Kaehlerian and contact settings (cf. [6], [17], [20]). To continue the sequel, we have considered warped product submanifolds of nearly K...
متن کاملContact CR-Warped product submanifolds in Kenmotsu space forms
Abstract: In the present paper, we give a necessary and sufficient condition for contact CR-warped product to be contact CR-product in Kenmotsu space forms.
متن کاملApplication of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کاملWarped Product Cr-submanifolds of Lp-cosymplectic Manifolds
In this paper, we study warped product CR-submanifolds of LP-cosymplectic manifolds. We have shown that the warped product of the type M = NT × fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant submanifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have obtained a characterization result for a CR-submanifold to be locally a CRwarped product.
متن کامل